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ABSTRACT 

Based on a case study in which a single geochemical anomaly was located in the vicinity of an 

abandoned mine in Central Portugal, a recursive methodology for anomaly/background separation was 

developed. This methodology relies on the supplementary projection of each of the samples taken from 

a subset of ‘anomaly candidates’ onto the axes provided by Principal Components Analysis of the 

background subset. The concept of ‘anomaly intensity’, defined by the average of the distances from 

the original to the supplementary projections, is the basis for final anomaly identification.  
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INTRODUCTION 

A variety of multivariate statistical methods have been applied to the identification of metallic 

geochemical anomalies, namely classical discriminant analysis (Bull and Mazzucchelli, 1975), 

empirical ranking using an a priori index (Smith and Perdrix, 1983), and canonical variate analysis 

(Smith et al., 1984). These applications rely on ‘external’ information or on the availability of training 

sets (a comprehensive review of such methods is given in Howarth and Sinding-Larsen, 1983). When 

the ‘anomaly’ is considered as a set of outliers that ‘emerge’ from the background, the point stressed 

(Singh et al., 1994) is the characterisation of the background in terms of ‘robust’ statistics referring to 

each variable, one at a time. Another author (Garrett, 1989a) introduced in geochemistry the concept of 

robust multivariate procedures. The generalization of cumulative probability plots to the multivariate 

situation was also proposed (Garrett, 1989b), through the use of the chi-square plot based on the 

Mahalanobis distance. This approach is very promising, even though it is not completely distribution-

free (a flavour of multi-gaussianity is needed for anomaly selection). Other approaches (Cheng et al., 

2000), although more ‘realistic’ in their assumptions and ‘sophisticated’ in their algorithms, call for 

large data sets, which are not always available in practice. 
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In the study reported here, where a priori information is scarce and the number of samples is exiguous, 

a new method for anomaly separation, interpretation and quantification was devised, based on the aim 

of geometrically isolating two systems of relationships, rather than focusing on each variable 

independently. 

The proposed methodology relies on the geometric properties of Principal Components Analysis of 

Standardized Data [cf. Vairinho et al. (1990), for the detailed description of the algorithm]. Once a 

group of ‘anomaly candidate’ samples are selected, through the inspection of their projections onto 

‘significant’ components (from the viewpoint of the relationship between the variables that are driving 

the process of separation of the two populations), they are projected as ‘supplementary individuals’ 

(Greenacre, 1984) onto the axes provided by the eigenvalue decomposition of the cosine matrix (which 

is the analogue of the correlation matrix in the geometric formulation) of the provisional background 

data subset. Then, the ‘anomaly intensity’ is calculated by the average shift, measured along the 

significant components, between the original and the supplementary projection of each sample (or 

variable). A recursive procedure is then implemented, by choosing the subset of samples that 

maximises ‘anomaly intensity’. The aim of this paper is to illustrate, in a comprehensive case study, a 

PCA-based geometrical method for anomaly separation, which does not call for large data sets or 

external information.       

 

PROPOSED METHODOLOGY 

Rationale 

In order to cope with the difficulties in defining and quantifying globally a ‘geochemical anomaly’ on 

the grounds of a small set of empirical data of concentrations of p elements at n sampling sites, a new 

methodology based on Principal Components Analysis of Standardized Data (PCASD) was devised. 

The rationale behind this methodology is guided by the following argument: 

(i) A ‘geochemical anomaly’ depends on the interaction of the measured variables and cannot be 

accounted for by the values of those variables, taken per se. 

(ii) In multi-element surveys, the separation of a ‘geochemical anomaly’ from the background 

should not be dealt with in univariate terms, but rather in the scope of a multivariate technique 

like PCASD, in which samples and variables are projected onto the same factorial space 

[‘biplots’, cf. Jolliffe (1986), p. 75; ‘RQ-mode PCA’, cf. Zhou et al. (1983)]. 

(iii) The criterium for identification of a sample as contributor to the anomaly relies on quantifying 

the ‘disturbance’ which that sample induces in the background system of relationships. 

The proposed methodology relies essentially on the supplementary projection of samples and variables 

in the framework of PCASD, which is equivalent to “Simultaneous R- and Q-Mode Factor Analysis” 

[as named by Davis (1986), p.594]. In this framework, both individuals and properties of the original 

matrix Z can be projected onto the same space, on the grounds that the scaling process guarantees that 

similarity between individuals is measured by an Euclidean distance (Zhou et al., 1983).  

In the framework of PCASD, the supplementary projection of a block A of the matrix Z onto another 

block B of Z consists simply of the calculation of AV, where V is the eigenvector matrix given by the 

decomposition of the cosine matrix that refers exclusively to B (this matrix contains the cosines of the 
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angles between points representing properties in the space of individuals). In geometric terms, this 

corresponds to finding the positions of the individuals belonging to A, in the space created by the 

individuals of B (responding to the objective of quantifying the ‘disturbance’ of B created by A). More 

than a mere exploratory data reduction technique, PCA is viewed here as a powerful geometrical 

method that unifies the traditional ‘scores’ of samples and ‘loadings’ of variables in terms of 

projections onto axes. This method can be used for referring the position of a set of samples on the 

space created by another set of samples by the ‘supplementary projection’ procedure, allowing also for 

interpretation in terms of variables in the simultaneous projection graphs. 

Description 

In Figure 1, the proposed methodology is described in terms of a three step flowchart. 
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Figure 1 

Flowchart of the proposed methodology 

 

The first step of the methodology can be summarized as follows: given a matrix Z of n individuals 

(samples), for which p properties are available (the concentrations of the p elements measured in each 

sample), the problem of anomaly identification consists of selecting, in Z, two subsets: one referring to 

the background (Block B), and the other to the anomaly (Block A). 

When Z is submitted to PCASD, the resulting axes can generally be interpreted in terms of the 

association of properties in a given geological and geochemical context. Also, those axes permit the 

separation of regions, in factor space, that are more likely to be linked to an ‘anomaly’ than to the 
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background. This is done by choosing those samples whose coordinates on ‘significant’ axes are higher 

(‘significant’ axes being interpreted on the grounds of the variables that are associated to the anomaly).  

Moreover, once the regions of factor space are identified where variables likely to cause the ‘anomaly’ 

are projected, it is easy to recognize the samples associated with those variables, due to the 

simultaneous projection of individuals and properties in the same space. Hence, this subset of samples 

is coined ‘anomaly candidates’, and the entire Z matrix is split (provisionally) into two blocks – Block 

B (background) and Block A (anomaly). 

The second step of the methodology consists of the supplementary projection [in the framework of 

PCASD, cf. Lebart et al. (1984)] of the ‘anomaly candidate’ samples (contained in Block A) onto the 

axes provided by the eigen value decomposition of the cosine matrix referring to the background 

samples (contained in Block B). 

This second step provides the ‘anomaly intensity’ for each sample, given by the distance, along 

‘significant’ axes, between the positions of the sample, before and after its supplementary projection 

(‘significant’ axes are those previously interpreted on the grounds of the variables that contribute to the 

anomaly, in a given geochemical context). 

This distance measures the dissimilarity between a sample viewed as part of the whole set and the same 

sample segregated into the anomaly subset and viewed in the framework of the complementary 

background. The distance can be seen as the contribution of the sample to the global ‘anomaly 

intensity’, since it measures the importance of each sample in the anomalous subset (the more that the 

‘significant’ sample properties are different from the background, the bigger is this distance). 

The output of this second step is the calculation of a global intensity of the anomaly, obtained by 

averaging the above defined distances for the entire set of ‘anomaly candidates’, A. This ‘anomaly 

intensity’ quantifies the shift induced on the ‘anomaly candidates’ by positioning them in a 

‘provisional’ background multivariate structure, given by the components of PCASD referring 

exclusively to B. Hence, the ‘anomaly intensity’ measures how much the background is ‘disturbed’ by 

the presence of anomalies, functioning as a criterium for judging the goodness of the provisional 

separation. 

Subsequently, in a third step, the samples that lie in the neighbourhood of the frontiers that define the 

anomaly regions in factor space (‘border samples’) can be moved from their initial subset to the other, 

until the global ‘anomaly intensity’ is maximised. At this point, the optimal separation of the anomaly 

subset from the background is reached. 
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CASE STUDY 

The above described methodology was applied to a geochemical prospecting campaign undertaken in  

Central Portugal, in the vicinity of the Zorro mine. This abandoned mine is located in the Central 

Iberian geotectonic Zone, near the contact with the Ossa Morena Zone (Fig. 2). The mineralization 

consists of outcropping veins of quartz (locally dolomite and ankerite), with argentiferous galena and 

sphalerite. The veins have a NW-SE strike and dip 60º to the East.  
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Central Iberian Zone
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South Portuguese Zone

Meso-Cenozoic

Major tectonic accidents
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Figure 2 

General geological context of the Zorro abandoned mine 

 

The geochemical campaign provided a data set of 45 samples, taken from the B horizon of the soil, at a 

regular 20 meter interval along two lines, separated by 200 m and perpendicular to the strike of the 

veins. The first 18 samples came from the northernmost line, the other 27 from the southern line. The  

fraction smaller than 80 mesh (177 µm) was recovered for each sample, completely solved in a mixture 

of acids (HF, HNO3 and HClO4),  and the concentration of the following elements was determined: Ag, 

Ba, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Ti, Zn, As, Sb and Sn. The pH was also measured for each sample. 

The empirical data, in the form of a nxp matrix (n=45 samples, p=16 variables), was submitted to the 

PCASD algorithm, giving rise to the projection of variables shown in Figure 3. 

The interpretation of Figure 3 is clear – axis 1 opposes the mineralization elements (arranged in two 

groups – Cu and Zn, and As, Ag, Sb and Pb) to the soil components, associated to pH. Hence, the 

farther a sample projects from the origin, on the positive side of axis 1, the greater is its ‘anomalous’ 

character. This leads to the conclusion that the only ‘significant’ axis is the first, and further discussion 

refers only to this axis. 
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Figure 3 

Projection of variables onto the first factorial plane 

produced by PCASD of the entire data set 

(explaining 61% of the inertia contained in the correlation matrix) 

 

The projection of samples onto the same plane is given in Figure 4. Selection of the ‘anomalous 

candidate samples’ is straightforward, by sorting their positive co-ordinate on axis 1 in descending 

order: 6, 13, 7, 8, 10, 9, 11, and 12. The group of samples 39, 40, 43, 36 and 41, although projected 

onto the positive side of axis 1, was not selected, at this stage, as ‘anomaly candidates’, as these 

samples appear to represent only an extension of the background distribution. 
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Figure 4 

Projection of samples onto the first factorial plane 

produced by PCASD of the entire data set 

(explaining 61% of the inertia contained in the correlation matrix) 
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Hence, the total data set was split into a ‘background matrix’ of 37x16 elements, and an ‘anomaly 

matrix’ containing the selected 8 samples. The supplementary projection of the samples contained in 

this ‘anomaly matrix’ onto the axes provided by PCASD of the ‘background matrix’ is shown in Figure 

5. As expected, the anomalous samples move away from the origin, in the direction of increasing 

positive co-ordinates on axis 1, and their ‘importance’ is reversed in some cases (now the sequence is 

13, 6, 7, 8, 9, 10, 12, 11). 
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Figure 5 

Projection of samples onto the first factorial plane 

produced by PCASD of the background subset 

 (supplementary projection of anomalous samples) 
 

With regard to variables, their position before and after the supplementary projection can be visualised 

in the same graph – see Figure 6. As expected, the variables that are associated to the anomaly (Cu and 

Zn, and As, Ag, Sb and Pb) shift towards the origin when the supplementary projection of the 

anomalous samples is compared to the original one (revealing a more uniform configuration, 

characteristic of the background). 
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Figure 6 

Plot of variables before and after 

supplementary projection of the anomalous samples 

(supplementary projection of each variable is denoted by *) 
 

The importance of each variable in the anomaly formation can be quantified by the distance dj1 

(distance, along axis 1, between the positions before and after supplementary projection, cf. Fig. 6). 

These values are given in Table 1, showing the ranking of the ‘interesting variables’ for this specific 

anomaly. 

 

Table 1 

Distance between variable positions along axis 1, before and after supplementary projection 

 

Variable 

 

dj1 

 

As 

Pb 

Sb 

Ag 

Zn 

Cu 

 

0.355 

0.271 

0.264 

0.244 

0.177 

0.003 
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Regarding samples, their ‘anomaly intensities’ can be measured by the distance between their 

positions, along axis 1, before and after supplementary projection, as given in Table 2 by di1 (note that 

a new sequence is obtained, now ranking samples in terms of their contribution to ‘anomaly intensity’).  

 

Table 2 

Distance between sample positions along axis 1, before and after supplementary projection 

 

Sample 

 

di1 

 

13 

6 

7 

9 

8 

12 

10 

11 

 

8.523 

7.870 

3.789 

3.690 

3.598 

2.424 

2.178 

1.722 

 

The relative positions of anomalous samples in the plane of axes 1 and 2 are shown in Figure 7 by their 

locations before and after the supplementary projection. 
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Figure 7 

Plot of samples before and after 

supplementary projection of the anomalous samples 

(supplementary projection of each sample is denoted by *) 

 

The global intensity of the anomaly, obtained by averaging the values of di1 from Table 2, is 4.242.  

By moving samples 36, 39, 40, 41 and 43 - which have also a positive coordinate on axis 1 (see Fig. 4) 

-, one at a time, from the background subset to the anomaly subset, no further increase is obtained (the 

new global anomaly intensities are always lower than 4.242). Hence, the separation initially performed 

between anomaly and background cannot be improved. 
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CONCLUSIONS 

The proposed methodology proved to be a reliable procedure for anomaly identification based on the 

relationships between concentrations in a set of elements determined in small sample sets.  Moreover, it 

calls for a minimum of ‘external’ information and provides a good visualisation of the interdependence 

between variables, thus facilitating an interpretation that supports the selection of ‘anomaly candidates’ 

on factor planes. The underlying pre-requisite is only that the samples are representative of 

background/anomaly multivariate structure (in the sense that it allows to choose visually the ‘anomaly 

candidates’ in the PCASD graphs). The ‘anomaly intensity’ concept is applied to the 

anomaly/background optimisation procedure, which cannot rely on random selection of ‘anomaly 

candidates’. The methodology does not provide the internal structure of each anomaly, in the sense that 

it cannot cope with multiple type anomalies, but it is viewed as a first step for anomaly comparison in 

different contexts. 
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