COPPER GRADE PATTERNS AT DIFFERENT SCALES : AN EMPIRICAL STUDY
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ABSTRACT

A sulphite orebody was recognized at a metric scale for reserve evaluation purposes. A
drilling campaign was performed and 1 m support samples were assayed for copper. In a later
phase, some cuttings were splitted in 2.5 mm pieces in order to measure ore dressing control
parameters. Each 2.5 mm sample was also assayed for copper. Variograms of the copper grade were
calculated for the two sets of samples and a striking similarity was noticed between the general

"attitude'" of the variograms at different scales, suggesting a structural repetition.

A scale-free grade pattern is hypothesised, leading to a reduced variogram model in h®

which depends only on the sampling interval for each set of data.

RESUME

La régionalisation des teneurs en cuivre 4 des échelles différentes

Une étude empirique

Afin d'en évaluer les réserves miniéres, un gisement de sulfures a été reconnu par
sondages a différentes échelles. Un premier ensemble de données constitué par des trongons de
sondages de 1 m a été utilisé pour la détermination des teneurs en cuivre. Dans une phase finale,
quelques sondages destructifs ont été effectués et des analyses en Cu ont été faites sur des
trongons de sondages de 2.5 mm afin d'évaluer les paramétres de contrdle liés a la valorisation
du minerais. Les variogrammes des teneurs en cuivre ont été calculés sur ces deux ensembles de
données. Une ressemblance remarquable peut &tre observée entre ces deux courbes calculées pour

ces deux échelles, ce qui suggere une répétition structurale.

Un modéle de régionalisation indépendante de 1'échelle a laquelle est effectué 1'échan-

3 ” . 3 . ’ a
tillonnage est proposé, le variogramme utilisé est de la forme h .
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A — EXPERIMENTAL EVIDENCE

In a sulphite orebody, two sets of samples were assayed for Cu :

. the first set, denoted "MET" in the following, is composed by 616 core samples taken 1 m
apart in drill-holes. The length of each core is also 1 m.

. the second set, denoted "MIL", contains 1130 small samples (2.5 mm long) taken at a cons-
tant mesh of 2.5 mm in some cores, assumed to be representative of the ore type being
studied.

Variograms down-hole were calculated in both sets (cf. table of experimental variogram values in
Annex A). For the first set, the average reduced variogram is presented in figure 1 in ordinates,
values of the variogram ( 7MET(h)) divided by the experimental variance (VAR) are plotted for
multiples of the basic step size (1 m). The average is denoted by m and the number of points by
N. 13

Tuerlh) 7 VAR

u

N=816
m=8.45 (%)
VAR=45.42 (%) 2

Fig. 1 - Experimental reduced variogram for the metric scale (step 1 m)

For the second set, the average reduced variogram is shown in figure 2. The step is now 2.5 mm
for this set of data.
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Fig. 2 - Experimental reduced variogram for the millimetric scale (step 0.0025 m).
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Fig. 3 - Cross correlation function relating variograms at two scales
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From the simple visual comparison of the two curves (Fig. 1 and 2), a striking similarity comes up.
It seems obvious that both variograms have the same general "attitude" and, apart from scale, it is
felt that the two functions belong to the same "family".

In order to check this idea, values of YMET(h) were plotted against values of~7MIL(h) for each step,
and a rather good linear correlation coefficient was found (p = . 94). Also, the cross correlation
function relating 7MET(h) to YMIL(h) was calculated for different lags. The graph of this function
is shown in Fig. 3.

The analysis of Fig. 3 leads to the conclusion that, despite of some periodicities, a large peak
is reached for small lags (+ 1). So, it was decided to proceed a comparing study of the point to
point variogram for different multiples of the basic step on each scale.

In order to complete experimental evidence about the two sets of data, it is also presented in

Annex B typical profiles of the variable Cu grade along drill-holes and histograms for both sets
(MIL and MET).

B — MODELING EXPERIMENTAL VARIOGRAMS

Yuer(h) 7 VAR METRIC SCALE

12 1

A]
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3 m=8.45 (*/)
P VAR=45.42 (*f) 7

0=.01
=Yg (h)/ VAR=Coe K h™#K=.20
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Fig. 4 - Variogram model in h® for the metric scale
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For the sake of simplicity, and disregarding the virtual hole-effect apparent in both variograms,
the model chosen to interpolate the experimental curves is a power function scheme given by
v(h) = Co + K h® (1]

For the first set of data (MET), the fitted model is shown in figure 4. The parameters of the
model are the following :

Co="2-0l
K 244220
a7 =i i3b

For the metric scale, the variogram model is written as the following :

35

For the second set of data (MIL), the fitted model and the calculated parameters are presented in
figure 5.

For the millimetric scale, the variogram model is written :

= .35
YMIL(h)/VARMIL . 0% L4630 [3]

Va{h)/ VAR MILLIMETRIC SCALE

N=1130
mz=9.52 (%)
2 VAR = 20116 (*a)2

Co=10
=¥ LN}/ VAR=Cos Kh{K =163
CER 1
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Fig. 5 - Variogram model in h* for the millimetric scale
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C — MATCHING VARIOGRAM MODELS AT TWO SCALES

Comparing the parameters involved in the two models previously fitted, it was noticed that the
following proportional relationship holds:

Comer _ Kuer _ . B 4]
Cor  KmiL  “Swer :
where
SMIL = . 0025 m is the sampling interval (basic step) at the millimetric scale
Swer = 1 m is the sampling interval (basic step) at the metric scale

Hence, the millimetric variogram model may be derived from the metric one through the expression:
Y g (N /VARyr = Y yer(h)/VARyer . (Syer/Syp )™ (5]

In general terms, the following relationship linking variograms models at two scales may be written:

VARS -
Ys(h) = YSi(h) WR_S'R [6]

where
R = §'/S is the ratio of the basic steps (sampling intervals) for each scale

a is the power of the scheme in h® modeling vyg(h) and v (h)

D — DISCUSSION

The problem of dealing with the repetition of geostructures for different scales has been treated
by several authors, in a number of diverse situations.

In particular, Nemec (1983, p. 51) derives experimentally a "planetary" general formula linking the
equidistance between similar patterns to a set of characteristic variables of the planet. It s
obvious that the data presented here are not suitable to such a broad approach, the scope of which
is too global.

Another view of the problem is described in Serra's classical paper (Serra, 1968), which provides an
interpretation of structures at different scales on the grounds of successive nested transition
spherical schemes. The invariant quantities allowing the scale transfer would be the ratio of ranges
and sills for each pair of successive scales (Serra, 1968, p. 150).
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For the case presented here, Serra's approach may be applied if the variogram in h* s taken as the
sum of nested spheric models, the ranges of which are in geometric pregression.. I'n'Fig. 6 and 7- it
can be seen that it is possible to fit nested spheric schemes with the following ranges:

aMIL1 = .025m aMIL2 = 375 m (millimetric scale
aMET1 = 6 m aMETZ = 84 m (metric scale)
13 T
Yuer(h) / VAR
METRIC SCALE
12 1 NESTED SPHERICAL MODELS

u
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2 4 mz8.45 (°)
VAR=245.62 (% ¢
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az:z8&m

S — ——

) P s 12 M 20 2% 28 Y 36 A i @ s2 s e
Fig. 6 - Variogram spheric nested models for the metric scale

{5
In this particular case, a constant ratio for successive ranges may be found (aMIL /aMIL
2 1
= aMETT/aMILZ = aMETzlaMET1 = 15), although aMIL2 and aMET2 fall out of the experimental field

available.

Moreover, this relationship does not hold for sills relative to each set of data (CMIL /CMIL = 1.64
7 1

and CMETZ/CMET1 = 3.05) and it is hard to check for different supports.

Even though a simple proportional relationship Tinking the parameters of the spheric models for the
two scales could be found, the physical meaning of the ratio of parameters for such a relationship
would not be as straightforward as the correspondent R (cf. equation [ 6 ] , where R = 400),which
is the ratio of the basic steps for each scale.

(*) Assuming that ranges are insensitive to the support change
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Fig. 7 - Variogram spheric nested models for the millimetric scale

So, it seems that the nested structures model, although more appealing on the geostatistical point
of view (as it involves transition schemes fitting two structures apparent for each scale),presents
some interpretation problems and is less parcimonious regarding the scale transfer objective.

Refering back to equation [ 6 ] , it is worth noting that the model thereby described depends only

on the scale parameter R and on the power o .

The scale-free power a reveals a certain persistence in the regionalized variable spatial distribut
jon. The physical meaning of a may be searched in the framework of Mandelbrot's theory of fraction-
al Gaussian noise(Mandelbrot and Wallis, 1969), which is the generalization of a Wiener-Levy process
(characterized by a variogram y-(h) = h). Indeed, Mandelbrot claims that the concept of "self-simil-
arity", originated in the theory of turbulence, applies to a wide variety of natural phenomena
(Mandelbrot and Wallis, 1968, p. 909). For those cases, the variogram is proportional to h* , where
the power a is related to the fractal dimension of the phenomenon.

Hence, in the case study presented here, the parameter & , being invariant to scale change, may be
interpreted as a measure of how erratic is the profile of the copper grade along drill-holes,account
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ing for the strength of spatial persistence of that variable, regardless scale.

The other parameters of the variogram (vz. Co and K in equation [ 1 ] ),once fitted to a certain
"reference" sampling interval, may be calculated for other basic step size by simple rescaling ,
using equation|[ 6 ]

It seems that further research must be developed on the application of Mandelbrot's approach to
genetic mineralization models, aiming to enhance the geological meaning of persistence and self-
-similarity in regionalized variables, for which transition schemes have been currently applied.
It is clear that fractal theory is not inconsistent with the nested structures model (as Hosking,
1984, p. 1899, points out for the case of hydrological long-memory time-series).but the scope of geo-
statistical structural analysis could be enlarged (apart from estimation purposes),if proper mineral-
jzation models were derived. A possible avenue of research could be based, namely, on spectral den
sity functions of regionalized variables, for which the frequency domain study, linked to fractal
theory, may possibly clear up some interpretation problems.
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TABLE OF EXPERIMENTAL VALUES FOR THE VARIOGRAM AT TWO SCALES

ANNEX

A

MULTIPLE SET “MIL" SET "MET™
(gkgﬁf MILLIMETRIC SCALE METRIC SCALE
STEP NUMBER OF PAIRS VARTOGRAM (%)° NUMBER OF PAIRS VARTOGRAM (%)
1 1110 63.33 183 6.55
2 1090 82.05 424 8,07
3 1070 9624 377 1285
1 1050 10238 327 17.72
5 1030 109.50 599 20.24
6 1070 116 .55 260 21.35
7 990 128.03 246 23.76
8 970 131.55 227 23,56
9 950 12783 216 2227
10 930 126.37 192 23.81
1 970 128.76 163 23.68
12 890 12893 176 20.38
13 870 12030 160 22.72
12 850 12477 145 20.98
15 830 12556 144 1287
16 810 119.59 130 16.81
17 790 118.90 127 14.40
18 770 113.05 111 17.67
19 750 115.20 115 16.62
20 730 122735 109 17.96
77 770 13279 109 1961
92 690 135.60 117 19.13
23 670 129.64 110 20,69
51 650 14086 105 77:71
%5 630 14740 91 23044
26 610 14882 97 23.84
27 590 143.19 92 26.87
78 570 14129 37 2983
29 550 151.24 88 2849
30 530 15493 82 57.77
31 570 161.66 77 26.78
32 190 151.93 77 2463
33 471 14853 70 20.08
31 452 151.99 63 18.03
35 433 15981 58 2380
36 471 12423 56 27°28
37 395 14925 53 26.25
38 376 155.67 a5 27.06
39 357 15768 42 26.90
10 338 16626 a1 29.83
41 319 153.61 37 30,34
42 300 156. 25 37 33.88
43 281 161.27 33 33.73
42 262 165.75 35 55145
45 243 16447 32 59.07
46 925 179,62 30 32.70
47 507 16998 57 3285
48 190 18490 28 34,57
49 174 189,05 27 1522
50 159 18727 26 45. 68
57 145 19261 24 41’24
52 133 217.9 23 46.11
53 121 221.02 20 4540
52 109 201.67 18 4749
55 98 19480 16 51.37
56 89 213.78 15 5507
57 81 22596 12 19.85
58 73 99392 10 41.97
59 66 195.23 7 3165
60 50 179,07 7 3945
BASIC STEP 0.0025 m 1 m
NUMBER OF SAMPLES 1130 616
AVERAGE 9.52 % 8.45 %
VARIANCE 201.16(%)° 45.45(%)°
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ANNEX

B

PROFILES AND HISTOGRAMS OF THE VARIABLE FOR THE TWO SETS OF DATA
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Profile of standardized variable
(z = (x -m)/o ) along a typical
drill-hole (set "MIL")
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